Hybrid human detection and recognition in surveillance

نویسندگان

  • Qiang Liu
  • Wei Zhang
  • Hongliang Li
  • King Ngi Ngan
چکیده

In this paper, we present a hybrid human recognition system for surveillance. A Cascade Head–Shoulder Detector (CHSD) with human body model is proposed to find the face region in a surveillance video frame image. The CHSD is a chain of rejecters which combines the advantages of Haar-like feature and HoG feature to make the detector more efficient and effective. For human recognition, we introduce an pose change and blurring. To well model the variations of faces, an Adaptive Gaussian Mixture Model (AGMM) is presented to describe the distributions of the face images. Since AGMM does not need the facial topology, the proposed method is resistant to face detection error caused by imperfect localization or misalignment. Experimental results demonstrate the effectiveness of the proposed method in public dataset as well as real surveillance video. & 2016 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Detection , Tracking and Trajectory Extraction in a Surveillance Camera network

This paper proposes human tracking and recognition method in a camera network. Human matching in a multi-camera surveillance system is a fundamental issue for increasing the accuracy of recognition in multiple views of cameras. In camera network, videos have different characteristics such as pose, scale and illumination. Therefore it is necessary to use a hybrid scheme of scale invariant featur...

متن کامل

Hybrid Face Detection in Color Images

Face detection, plays an important role in many applications such as face recognition, face tracking, human computer interface and video surveillance. In this paper we propose a Hybrid face detection algorithm that could detect faces in color images with different complex backgrounds and lights. Our method, first detect face regions using HAAR classifier over an entire image and generate candid...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A Hybrid Face Detection System using combination of Appearance-based and Feature-based methods

Human face detection is preliminary required step of face recognition systems as well as a very important task in many applications, such as security access control systems, video surveillance, human computer interface and image database management. This paper intends to combine Viola and Jones face detection method with a color-based method to propose an improved face detection method. Experim...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 194  شماره 

صفحات  -

تاریخ انتشار 2016